Institut de Recherche en Informatique Fondamentale (IRIF)


image/svg+xml

L'IRIF est une unité mixte de recherche (UMR 8243) entre le CNRS et l'Université de Paris, qui héberge deux équipes-projets Inria.

Les recherches menées à l'IRIF reposent sur l’étude et la compréhension des fondements de toute l’informatique, afin d’apporter des solutions innovantes aux défis actuels et futurs des sciences numériques.

L'IRIF regroupe près de deux cents personnes. Six de ses membres ont été lauréats de l'European Research Council (ERC), cinq sont membres de l'Institut Universitaire de France (IUF), deux sont membres de l'Academia Europæa, et un est membre de l'Académie des sciences.

6.7.2020
The members of the CS department and the laboratory IRIF of Université de Paris voted in favor of a motion requesting the withdrawal of the LPPR project.

Amos Korman

22.6.2020
Amos Korman (IRIF) will give a talk for receiving the 2020 prize of innovations in distributed computing. It will be broadcast live on Tuesday, June 30, at 7-8 pm (CET). Watching the talk is free of charge, but registration is required.

FSCD

15.6.2020
Members of IRIF organize the fifth International Conference on Formal Structures for Computation and Deduction (FSCD) and its affiliated workshops. The event was planned in Paris, due to the pandemic, it is now an online conference held from 06-29 to 07-06.

Sylvain Schmitz

22.6.2020
Sylvain Schmitz (IRIF) co-organizes the “14th International Conference on Reachability Problems” (RP'20), that is planned to take place either online or at IRIF on October 19-20.

Tommaso Petrucciani

25.6.2020
Tommaso Petrucciani is awarded the GPL PhD Thesis Prize (Software Engineering and Programming) for his thesis“ “Polymorphic set-theoretic types for functional languages” prepared at IRIF co-supervised by Giuseppe Castagna (IRIF) and Elena Zucca (Università di Genova).
Polymorphism and set-theoretic types

A function is polymorphic when it can be applied to arguments of different types. For instance, the identity function fun x = x is polymorphic since it can be applied, say, to integers and Boolean arguments, while the successor function fun x = x+1 is not, since it can be applied only to integers. The latter function has type Int→Int, while the former has type ∀α.α→α, that is, it has type α→α for all possibles types α. The last type is a polymorphic type. Set theoretic types are types with union, intersection, and negation connectives: again fun x = x has both type Int→Int and Bool→Bool and, thus, it has the intersection type (Int→Int)∩(Bool→Bool).


(Ces actualités sont présentées selon un classement mêlant priorité et aléatoire.)

Nombre limité d'évènements durant les vacances d'été

Vérification
Lundi 13 juillet 2020, 11 heures, (online, using BigBlueButton)
Jan Kretinsky (Technical University of Munich) Approximating Values of Generalized-Reachability Stochastic Games

Simple stochastic games are turn-based 2.5-player games with a reachability objective. The basic question asks whether one player can ensure reaching a given target with at least a given probability. A natural extension is games with a conjunction of such conditions as objective. Despite a plethora of recent results on the analysis of systems with multiple objectives, the decidability of this basic problem remains open. In this paper, we present an algorithm approximating the Pareto frontier of the achievable values to a given precision. Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the current approximation and its error bound.